1. Let 0 < § < 7, and define the 27 periodic function f by

Fa) = {1, if |a] <0

0, if 6 < |a| < ||

(a) Compute the Fourier coefficients of f.
(b) Show that
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Ans:
iap=9/m an,=2sinnd/nm, b, =0.
ii Evaluate the Fourier series at x = 0.
iii Use Parseval’s identity.

iv. The idea of the solution is as follows: For a sufficiently large integer N,
we can approximate the integral
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And we can approximate the second integral using a Riemann sum. In
fact, let m be a sufficiently large positive integer, we can partition the

interval [0, N] into Nm sub-intervals of equal length %, and the integral
is then approximated by the corresponding (right) Riemann sum:
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where §,, = % Next, we denote S,, to be the sum:
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We will will show that
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the desired formula thus follows. In order to show the above equality, note
that
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Let € > 0, what we need to do is to choose m and N carefully so that each

term of the right hand side of the above inequality is less than e.
We begin with the last term. Note that
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We next deal with the first term, if m > 1, and N’ is a positive integer to
be chosen, then
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Since Y 77, 7 < 0o, we can choose N’ so that the last sum is < e, in
other words, we can take

N> N’ (2)

It remains the middle term. Fixing an integer IV satisfying the condition

(1) and (2).



Since the function Sigzm is continuous on [0, N], it is integrable on [0, N].

Therefore, we can find a § > 0 such that for any partition P of [0, N],
with ||P|| < § and any Riemann sum S with respect to the partition P,

we have
S—/N (singz?)zdilc
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Hence, if we choose M = 1/§, then
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whenever m > M.

To conclude, we have shown that for each € > 0, there exists a positive

number M such that
Sm — /00 (sinx)de
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for all m > M. This finishes the analysis.
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